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ABSTRACT o

AL Gulie s
Given a feasible point for a nonlinear programming problem,:;;u‘l~di
investigate the structure of the feasible se}/aeafkﬁafe‘point. Under the
constraint qualification called regularity, we show-how to compute the tangent
cone to the feasible set, and to produce feasible arcs with prescribed first

and second derivatives. In order to carry out these constructions,\we show

et e e b

thata particular way of representing the feasible set (as a system ?f o, .
JL/ o Hivie T

equations with constrained variables) is particularly useful. We—aise-give

L fairly short proofs of the first-order and second-order necessary optimality

conditions in very general forms, using the arc constructions menti~ned above.

L A

AMS (MOS) Subject Classifications: Primary 90C30; Secondary 90-02

Key Words: Nonlinear inequalities, nonlinear programming, nonconvex
programming

Work Unit Number 5 (Mathematical Programming)

Preliminary research for this paper was carried out at the Centre de
Recherche de Mathematiques de la Decision, Universite Paris~IX Dauphine,
France, with support from the C.N.R.S., and the paper was presented by
invitation at the Interamerican Workshop on Numerical Methods, Caracas,
Venezuela, in June 1982, The author thanks all sponsoring organizations for
their very helpful support of this work.

L 1
Department of Industrial Engineering and Mathematics Research Center,
University of Wisconsin-Madison, Madison, WI 53705.

Sponsored by the National Science Foundation under Grants MCS 7901066 (Mod. 2)
and MCS 8200632, and by the United States Army under Contract No. DAAG29-80~-C-
0041.

LIPSy N WL WU A TN Dy A Y

A O N A e get T SV B E S e gaed |

DESEAEAE A

o d

LA

T
PR
.

L 408
T ‘ .a'l




SIGNIFICANCE AND EXPLANATION

Nonlinear programming is concerned with the problem of minimizing a
function, often fairly smooth, over a set (the so-called feasible set)
described by nonlinear inequality and equality constraints, as well as perhaps
some bounds or other restrictions on the variables. Problems of nonlinear
programming arise in statistics, in chemical engineering, in economics, and in
many other areas.

Certain basic conditions, called optimality conditions, must be satisfied
by any candidate for a solution of such a problem, provided that the
constraints satisfy a reasonable regularity condition. These conditions
describe the relationship of the derivatives of the function being minimized
to the derivatives of the conatraint.functiona and the set over which the
minimigation is being done. They form the basis for most numerical algorithms

’

for solving such problems., ~——— —— . . . .. _ > o !
This paper examines the structure of the feasible set, and introduces

some effective and fairly simple ways of dealing with this set. As a by-

product of these techniques, comparatively simple and straightforward proofs

of the optimality conditions and of related results are given,.
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LOCAL STRUCTURE OF FEASIBLE SETS IN NONLINEAR PROGRAMMING, PART I: REGULARITY

Stephen M. Robinuon“

1. Introduction: the regqularity condition.
This paper deals with solution sets of systems
hi(x) = 0
(1.1)

xecC,
where h is a C° function (r 2 1) from an open set 2 in R to R", and vhere C
is a convex set, not necessarily closed, in R". We shall denote the set of all solutions
of (1.1) by C N h'1(0), or briefly by F. One of the main application areas in which
sets like F arise is nonlinear programming, since the constraints of many nonlinear
programming problems either look like (1.1) or can be made to look that way by simple
manipulations such as adding slack variables. Therefore, most of our analysis of (t.1)
will be aimed at establishing results useful in nonlinear programming.

Given a point x, € F, we often want to know what that part of F near %X is
like. However, it is hard to tell much about F by looking directly at the nonlinear
system (1.1). Therefore, a natural idea is to simplify (1.1) by linearizing h about
xq and then to consider the system

hixg) + h'(x5)(x = x5) = 0

(1.2)
xecC.

'Prelininary research for this paper was carried out at the Centre de Recherche de
Mathématiques de la Décision, Université Paris-IX Dauphine, France, with support from the
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Wumerical Methods, Caracas, Venezuela, in June 1982. The author thanks all sponsoring
organizations for their very helpful support of this work.
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& Since hi{xy) = 0 by assumption, the set of solutions of (1.2) is just
l‘ x5 + (C = x5) N ker h'(xy), where ker h'(x,) denotes the set {zlh'(xo)z = 0}. we shall
': denote this solution set by LF. Note that LF 1is a convex set, so we can deal with it
o considerably more easily than we can with F.
-f An implicit assumption behind the construction and use of LF is that near x, LF is
*a good approximation” of F: one thinks, for example, of the tangent space to a smooth
v manifold. However, it can easily happen that LF 4is nothing like F. Consider, for
' example, the case with n=2 and a =1, in which
: R(EM o= E2 - m
:': and

*- c = {(§,ming 0} .
o With these definitions, it is clear that F 1is the origin in R%, while if ve take x,

. to be the origin then LF = R x {0} = {(1,0)[A € R} On the other hand, if we take the

X same function h but change C to {iE,l'l)IE2 - ng 0}, then F becomes

: ((E,I'I)IE2 -~ n =0} while LF becomes the origin. Hence in these two cases F and LF
are not at all alike, and in general we will need some criterion to ensure that LF 1is
:: locally similar to F if we are to use LF to draw conclusions about F.

:}T The criterion we shall use is an extension of the familiar requirement, for systems of
. equations, that the derivative of h at x, carry " onto E®. The extension consists
:: in taking appropriate account of the presence of the convex set C, and to do this we need
'f the idea of a tangent cone. S8ince we shall use this idea later too, we introduce it in a
'E: fairly general form: if S is a subset of R and x € cl 8, then the (Bouligand)
A tangent cone to 8 at x is the set 'rs(x) consisting of all right derivatives of arcs
.i:, emanating from x with the property that every neighborhood of x meets the intersection
'~ of S with the arc. It is easy to show that a point 4 Dbelongs to Tg(x) if and only if
there are sequences {-n) C 8, converging to x, and (An) C (0,+4®), such that
-,._; xn(.n - x) converges to d. Ses, @.g9., (2] for more information about tangent cones.
.: Having the tangent cone, we can now make the extension we mentioned earlier, by

'- defining regular points for (1.1).
’. -2e .
N
S
P~

oy

£




; DEFINITION: Let x5 € C with h(xy) = 0. Then x, is a regular point of (1.1) if
g‘: 3 h'(xy) carries T.(x;) onto ",
E{‘ It will be helpful to have some equivalent forms of regqularity available. Three are
£ given in the next proposition.
i PROPOSITION 1.1: Let h and C be as previously defined, with x, € F. Then the
’E: following are equivalent:
X () 'xg)(Tolxg)] = B (1.3)
(b)  h'(xg)(aff C) = W* and ker h'(xy) N ri(C - x5) # 6, (1.4)
: where ri denotes relative interior (see [4] for definitions).
(e) 0 e int{n(x)) + n'(xg)(C = x)} , (1.5)
M int denotes interior.
Part (c) of Proposition 1.1 is the form in which regularity was introduced in {3];
part (b) is a generalized version of the well known Mangasarian-Fromovitz constraint
. qualification (1], and part (a) is used in [2]). Por our constructions in this paper, we
. shall depend primarily on (b).
PROOF: Denote h'(xq) by D; let B be the unit ball of X' and denote its
? intersection with aff(C - x5) by B..
-; (a ==> D): We know T,(xg) = cl cone(C - x;) since C 1is convex; in particular
; Telxg) C aff(c - %Xy) so that D(aff C) = ®. If (ker D)N ri(c - xg) is empty, then the
principal separation theorem (4, Th. 11.3] guarantees the existence of a nongero w € B*
: such that for each ¢ € C, (wD,c =~ x5) § 0. But then for any = € cl cone(C = xg) = Tn(xg)
: ve have (w,Dz) = (wD,z)} S 0, so that DITo(xg)] # X', contradicting (a). It follows
that (ker D) N ri(C - x,) # ¢, which proves (b).
3 (b==>c)s If D(aff C) = W* then we know D is an open mapping, so there is a

bounded neighborhood N of the origin in aff(C - "0) such that DN is a neighborhood of

the origin in ™. Let y € (ker D)N ri(Cc ~ xo)t then for some positive

e Cc, €@ _; then

[+ C
x°+y+6|lCc and thus y + NC C ~ x5. But Dly + &) = SDN, a neighborhood of the

€, X, *y+ Choose a positive & small encugh that & C
0
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origin, and therefore D(C - xo) is also a neighborhood of the origin. As f(xo) =0,
this proves (c). o

(c ==> a): As 'l'c(xo) D¢ - % (c) implies that D['rc(xo)] is a neighborhood of
the origin. But it is also a cone; hence it must be 2. This completes the proof.

With the idea of a tangent cone and the criterion of regularity, we are in a position

(I

to investigate the relationships between LF and F. 1In Section 2 we introduce a special
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coordinate system that is particularly well suited for this investigation; then in Section

e o

'
o

3 we apply this construction to show that F and LF have the same tangent cone at Xge
and to show further that feasible arcs can be constructed with prescribed tangents in LF.
Finally, we apply these arcs to give simple proofs of necessary conditions for optimization

on F.
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2. Construction of a coordinate system; feasible arcs.

In this section we show how to set up a special coordinate system that is fitted to

the structure of F near a regular point Xq e Denote aff C by A, and the subspace
parallel to A by M: then we gshall first use the implicit-function theorem to identify
that part of AN h"(O) near x, with that part of M N ker h'(x,) near 0, under the
regularity hypothesis. Then we shall show how this identification leads to a very simple
way of constructing feasible arcs with prescribed derivatives. These arcs will be applied
in the next section to prove results about tangent cones and optimality conditions.

First, we ‘are going to decompose ®" in a way that employs the subspaces, M and
ker h'(x;), of special importance to us. Let us denote h'(xg) by D. Then since
D(M) = D(aff ¢) = B® by part (b) of Proposition 1.1, we must have

{0} = oMt = uin’u e u'} .
But then also (im D*) N HJ' = {0}, and taking orthogonal complements we have
(ker D) + M = X", penote (ker D)N M by K, and let J and L be subspaces
complementary to K in ker D and M respectively: then we have
R"=JOKOL JOK=kerD, XOL=M. (2.1)

Given the decomposition (2.1), we denote by P;, Py and Py the projectors from
R onto the subspaces J, K, and L, in each case along the other two spaces. Thus
Py + Py PL = I, and the product of any two of these projectors is the zero operator. We
shall often write Py for Py + Px, the projector on ker D along L.

We now construct a particular generaligzed inverse of D that will aid us in applying
the implicit-function theorem. Note first that from (2.1) we have R® = (xer D) @ L, and
that

D(L) = D(L © K) = D(M) = ¥ .
It follows that D is a bijection from L onto ®", and the generalized inverse that we
want is just the inverse of this bijection. This will be a linear operator D~ from r
to A having the properties that DD is the identity of ®", and DD is the
projector Pp. To construct it, we can choose any bijection E from ' to L and let

D" = l(Dl)". The existence of (l)l)-1 is guaranteed since I 1is independent of

-5a
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ker D, and it is clear that DD~ is the identity of N'. To show that D™D = P, note

that D D annihilates ker D, while if f €L, then L =Ev for some v € R®, and then
D DL = DDEv = E(DE) ' (DE)v = BV = & .

As R" = (ker D) ® L we mist have DD = P, and it follows from this that

I-DD=Pgy

The construction of these subspaces and projectors may be easier to understand if we

relate the present situation to the well known case of linear programming. There, we have
hix) =ax - a, C=R, h'(xg) =a,

where A is a linear operator from R" to ® and a e X The regularity hypothesis

that we are using implies in particular that A has full row rank, and there is no loss of

generality in assuming that A 1is partitioned as (B N], with B m xm and

nonsingular. Then the space of the first m components of R is clearly of dimension

m  and independent of ker A, and we shall take it to be L. Now for the bijection E we

can choose [In], where Iy denotes the m x m identity matrix, and if we write D in
0

e[

place of A we have

Hence
s~! 1, "~ 'w
P, =DD= [B N] = ’
0 0 0
and
o -»'w
Pp=I1I-P = .
0 I

The reader will recognize the last n ~ m columns of Py as being the edges of the

feasible region along which the simplex method can move away from Xge
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Returning to the nonlinear situation, let us define a function F : axp® + 2@ by
P(x,y) 1= Dh(x) + (I = DD)[x = (x5 + ¥)] . (2.2)
As imD =L and I - DD =Py, the two major terms on the right-hand side of (2.2) lie
in the independent spaces L and %er D. Accordingly, one has P(x,y) = 0 if and only if
(1) D°h(x) = 0 (that is, h(x) = 0, since ker D = {0}), and
(11) Pylx - (x5 + y)) =0 (that is, x = (x5 + y) € L)»
Of course, if y € K then (i1) implies that Py(x - x3) =y, S0 x = X5 + y + 2 for some
t£eL. Thus, for x €0 and y €K, Fix,y) = 0 if and only if h(x) = 0 and
xe Xq +y+ L.
If we differentiate (2.2) with respect to x, we find that rx(xo,y) = I for any
y € K'. Thus, we may apply the implicit-function theorem to produce neighborhoods U of
the origin in 2" and V of x,, and a unique C" function x : U +V, such that
x(0) = x, and, for each y €U, P(x(y),y) = 0. This, in turn, meant that for each
meUNM, hix(m)] = 0 and Pylx(m) = x5] = Por = Pym. To find the derivatives of this

function x, we note that since F(x(y),y) = 0 we have

a
dy
where we have used the fact that F,(x;,0) = I. Therefore x°'(0) = Py, Now, if r2 2 we

0= r(x(y),y)ly_o = rx(xo,O)x'(O) + 'y(*o"” = x'(0) ~ Py,

can aifferentiate again to obtain

2
-} d
0= ;—Y-z- P(x(y) .y)ly.o - & [Ty (x(y) )% (y) + P (x(y),y)) Iy.o

= Pry(Xp,0)x! (0)x'(0) + ’xy(*ov“"'“” + P lx,,0)x"(0)
+ r“(xo,o)x'(l)) + rw(xo,O) . (2.3)
However, 'xy’ 'yx' and !” are all gero since the only appearance of y in (2.2) is in
a linesr term; also, we know P, (x,,0) = I, F  (x;,0) = D"h"(xy), and x'(0) = P,
Therefore (2.3) yields for arbitrary s,t:
x"(0)(s)(t) = =D "h"(xy) (Pys) (Pyt) . (2.4)
These derivatives can be further simplified if their arguments remain in ker D, since

there P, acts like the identity.
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The following theorem describes various properties of x, some of which we have noted

informally above.

THEOREM 2.1: Suppose X, is a regular point of (1.1) and let D, J, K, L and M be

as previously defined. Then there exist neighborhoods U of 0 in R" andV of )

in =, and a unique €' function x : U + V such that x(0) = X and, for each y e U,

h(x(y)] = 0 and Polx(y) = (x5 + y)] = 0. One has x'(0) = Py and, if r 2 2,
x"(0)(8)(t) = =D h"(x,)(Pys) (Pyt) for s,t € K.

Note that Theorem 2.1 yields P;lx(y) - x4] = Pgy, so that if y € K then
Polx(y) = %] = y, 8o that x(y) € xy + Pylx(y) = x4] + Py lx(y) - x3] € xg + y + LC g
+M=aff C. Thus x maps portions of K near 0 to portions of (aff C) N h~1(0)
near Xx,. However, we are really interested in F=cn h"(O), 80 we shall next examine
how to keep x(y) in C instead of just in aff C. It turns out that a very easy way to

do this is to investigate arcs in F. Our initial result involves only first derivatives.

THEOREM 2.2: Let h be c' and let x, be a regular point for (1.1). Let

1

d € ri To(xy). In order that there exist a C' arc w(t) in F=¢C Nh~1(0) with

w(0) = x; and w(0) = 4, it is necessary and sufficient that d € ker h'(x,).
PROOF (necessity): FPFor all small t we must have h(w(t)] = 0; thus
0 = & hiw(e) Iy = RFUxgIWI0) = h(xg)d .
(sufficiency): If 4 € ker h'(x;), then since d € ri 'l'c(xo) C M, we have 4 € K.
Also, since
d € ri Tolxy) = ri cl cone(C - x;) = ri cone(C = x;) = cone ri(C - x3) ,
there exist 1 > 0 and €> 0 with ud € ri(C - x5) and ud + €8, € c=- x), where
By =8 N M, the unit ball in M, and where cone § denotes the cone generated by the
set S. Now let y(t) := td; then with w := x O y we have, for small non—negative t,
wit) = x + w(0)t + o(t) . (2.5)
But
w(0) = x'(0)y(0) = Pgd = 4 .
Also, since y(t) remains in X we have h{w(t)) = 0 and w(t) € aff C by Theorem 2.1;

hence w(t) - Xy €M and, since 4 €K (CM), also the function denoted by o(t) in

RS S YA Y YA Yl Wi S A P Pl e N SR R R R
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P (2.5) remains in M. Thus
T wit) = xg = 1= 1 'e10 + u'eua + we lo(e))

and for small non-negative t this is a convex combination of points of C =- Xg hence

itself a point of C ~ xy by convexity. Thus, for all small non-negative t, w(t) € C,
and this completes the proof.

2 ingtead of only c‘, we can obtain a

If we are willing to assume that h is C
C2 arc, and we can prescribe not only its first derivative but also its second.

THEOREM 2.3: Let h be c? and let Xy be a reqular point for (1.1). Let

dec-x; and s €ri Tolxg)e In order that there exist a c? arc w(t) in

F=cnn'(0) with w0) = x5, w(0) = 4, and @(0) = s, it is necessary and sufficient

that d € ker h'(x,) and
h"(xo)dd + h'(xo)s =0 . (2.6)
PROOF (necessity): Theorem 2.2 tells us that we must have d € ker h'(xg). For
(2.6), recall that h(w(t)] = 0 for small non-negative t, so
dz
0 = =5 hiw(t)] | g = h"(xy)dd + h'(x5)s ,
dt
where we have used the facts that \;(0) = ad and #(0) = g,
(sufficiency): Suppose d € ker h'(xo) and (2.6) holds. For small non-negative ¢t

let

A%
2

Note that s € ri 'l'c(xo) CM=KOL, so Pys €XK. But

y(t) := td + tzpon .
d e (c - x)N ker h'(xg) C(K@L) N(JOK) =K, g0 in fact y(t) € XK. Let
w 3= x O y. For small non-negative t we have hw(t)] = N and w(t) € aff C by Theorem
2.1. Also,
w(0) = x'(0)y(0) = Pyd = d  (since d e€X) ,

and

G




®(0) = x"(0)y(0)y(0) + x’(0)§(0)

= -D"h"(xy)dd + Pls
= =D (~h'(xy)s) + Pys
= (P + Pyl =8,
where we have used (2.6), Pg = Pge DD = P, and Py + Py = I. Hence w has the
prescribed derivatives.
Now from Taylor's theorem we have for small non-negative ¢,
w(t) = xg + ta+ 3 t2a 4+ r() , (2.7)
where r(t) = o(t2). Note that since w(t) € aff C and since 4 € K(C M) and
s €ri To(xy) C M, we must have r(t) € M also. Since
s € ri To(xg) = ri cone(C ~ x3) = cone ri(C - x4} ,
there exist u > 0 and € > 0 with
us + tBu ceC - Xg ¢
where, as before, By = B N M. Rewriting (2.7) as
Cwte) - X = [1-t --;- b '?)0 + ta + % v e% e ¢ 2075 (en ,  (2.8)
we see that for small non-negative t the right~hand side of (2.8) is a convex combination
of points of C - X;, and therefore w(t) € C. But we know hlw(t)] = 0, so w(t) is
feasible, as required. This proves Theorem 2.3.
In this section we have shown how to use regularity to gain substantial amounts of
information about the structure of F near a regular point X+ In the final section we
show how to use this information to compute the tangent cone to F at Xo and to

establish necessary conditions for optimization on F.

-10~




3. Applications: the tangent cone to F; optimality conditions.

In this section we apply the construction of Section 2 to compute TF(xo) vhen x, ‘
is a regqular point, and to give simple proofs of the general first-order and second-order ‘
necessary optimality conditions of nonlinear programming. PFirst we consider the tangent
cone.

THEOREM 3.1: Let h be c!

¢+ and let x, be a reqular point for (1.1). Then
Tplxg) = Tolxg) N ker h'(xg).

PROOF: As F C C, we have T (xg) C To(xg)s If 4 € Tp(xy) then there is a
sequence {xn} CF with x, + x5 and, for some sequence (ln) C (0,+w),

An(xn = Xg) + d. Por each n we have

0 = hix,) = hixg) + h'(xy)(x, = x3) + o(lxn - xol) .

0 = n'ixgIA (x - x)) + (A #x - xbix - x,0 ol - x,1 .
Taking the limit, we find 4 € ker h'(x;), and thus Tr(to) C Tolxg) N ker h'(xg).
For the opposite inclusion, observe that regularity implies
¢ # ri(C - x5) N ker h'(xy) C cone ri(C = xg) N ker h'{x,)
= ri cl cone(C = %) N ker h'(xy) = ri T (xg) N ker h'(xg) .
Let d € ri Ta(xy) N ker h'(x;). Using Theorem 2.2, construct a c' arc w(t) in F
with w(0) = Xq ard ;1(0) = 4, For large n, define X, 1= '(n"). We have x, € F,
and x, * xg. Also, with kn 1= n we have
A(x = x) = alw(n™") = w(0)) = ntw(0)n! + o(n™")) = a + notn™h) .
Taking the limit we find that An(xn = %) +4d, so ae '!F(xo). Hence
ri Tolxg) N ker h'(xy) C Tplxg) (3.1)
The left side of (3.1) is the nonempty intersection of two relatively open sets, hence is
the relative interior of the intersection of their closures. Accordingly, we have
rilTqo(xg) N ker h'(xy)) C TF(xo) .
and since TF(xo) is closed we have
Talxg) N ker h'(xy) C 'rF(xo) .

This completes the proof.
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Theorem 3.1 yields a simple proof of the first-order necessary optimality conditions
under the hypothesis of regularity. To see how to construct such a proof, consider the
problem of minimizing £ on F, where f {is a function from Q to R.

THEOREM 3.2: let f and h Dbe c', and assume xg Ais a regular point of (1.1).
If x, is a local minimizer for f on F, then there is some A e R' with

‘ £ (xg) + h'(xo).l € -Nolxy) o

Here the asterisk denotes the adjoint operator, and uc(xo) is the normal cone to

C at x, defined by
No(xg) = 'rc(xo)' = {y e X"|vz € T (xy), (y,2) § O} .

PROOF: If d e 'rF(xo), then there are sequences {xn} C F and {An} C (0,+m)

with x + x, and Xn(x,l - xo) + d. PFor all large n, local optimality implies that

05 f(x,) - f(xg) = !'(xo)(xn - x) + o(lxn - xol) ’

0§ £ A (x, = xg) + (A b - xDIx - xg 1 lotix - x 1) .
Taking the limit we find that f£'(x,)d 3 0, and this shows that £'(x,) € =R F(xo). Also,
by Theorem 3.1 we have ‘l'F(xo) = Talxg) N ker h'(xy), s0

Np(xg) = [Talxg) N ker h'(xg)]° = cliNo(xy) + im h'(xg)") .
However, as noted in the proof of Theorem 3.1 the regularity condition implies
[ri To(xg)] N ker h'(xg) # 6, %0 by [4, Cor. 23.8.1] we find that Nu(xy) + im h'(xy)" is
closed (since the normal cone to a closed convex cone at the origin is the polar of that
cone). Hence, for some A € H* we have
£ (xg) + bt (x)) A € Nelxg) ,

which completes the proof.

We can derive a second-order necessary condition for the problem just considered,
under the same regularity hypothesis, if we are willing to assume that f and h are
. This is done in the next theorem, whose proof is based on an unpublished proof of
Weinberger [S] for a somewhat different problem.

THEOREM 3.3: et f and h be c?, and suppose_that x, 1is a reqular point of
{1.1)s If x5 is a local minimizer for £ on F, then for each
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. de (C-x) N ker h'(xg) with f£'(x5)d = 0, there exists i e R such that

£'(xg) + ' (x) ) € “Ng(xg)

X sad

- £7(xy)d + (A,h'(x))4d) 2 0 .

We note that under the hypotheses of this theorem, if d € (C - x3) N ker h'(x,) then
.': the first order condition implies f£'(x5)d 2 0. Hence we could have substituted

;:'.: "f‘(xo)d § 0" in the statement of the thoerem without changing anything.

{. PROOP: We first show that for each s € ri T, (x;) the system

% h'(xg)d = 0, h"(x5)dad + h'(x)s = 0

. £'(xg)d = 0, £7(x))dd + £°(xg)m < 0 (3.2)
aec-xy,

. is inconsistent. Indeed, suppose that s € ri T (x,) and that (3.2) is consistent. By
Theorem 2.3 there is a C? arc w(t) in F with w(0) = x5, w(0) = 4, and W(0) = s.
Define ¢ 1= £ O w. Then ¢(0) = 0, $(0) = £'(x5)w(0) = £'(xy)d = 0, and

8 $(0) = £9(xgIW(0I%(0) + £° (x,)9(0)

._ = £(x,)ad + £°(xy)8 < 0 .

‘ Hence for small t we have w(t) €F and

£lw(t)] = $(E) = §(0) + $(O)E + -;- #0)e? + o(e?)

. = £(xy) + 213 800) + £ 20(e2)) < f£(xy) .

- 8ince this contradicts the assumption that x, was a local minimizer for f on F, (3.2)
Ef must be inconsistent.

The remainder of the proof consists of a separation arqument designed to translate the
- inconsistency of (3.2) into a positive statement about the existence of A, Choose

; d e (C - xy)N ker h'(xy) with f£°(xg)d = 0, and define a linear transformation

D G 1 Wt o g by

2 h'(xg)s + oh"(x,)dd

G(.lc) 1= .
£'i{xg)e ¢ ct'(xo)dd

Recall that ri G[Tq(xy) % R, = G(rl['l‘c(xo) x l‘_l) = 6{Iri Tc(xo)l x [int R ]}. Por any
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8 €ri To(xg) and any 0 > 0, the inconsistency of (3.2) for the given 4 and s
implies that
Gls,0) ¢ {0)}™ x int m_ = rif{0}™" xn) .
Hence,
ri GlTo(xg) x R Nraf{o)” x ] =g .
By [4, Th. 11.3) there exist A\ e ¥, and uven v;th (AgeV) #0, such that for
each = € To(xy), YER,, and S ER,
(xo,h'(xo): + Th®(xy)aa) + vl!'(xo)s + YE"(x,)ad) 2 ) V. (3.3)
The form of (3.3) ensures that N 2 0 and V2 0. Also, by choosing Y= 0 in (3.3) we
obtain
(Ao,h'(xo)z) + ve'(xy)z 2 0 (3.4)
for each s € T(x,), and by choosing = = 0 and f— 1 we have
(2g/h"(x))ad) + ve"(x )84 2 0 . (3.5)
If v=0 then xo # 0 and, from (3.4), for each = € Tn(xy) we have (%,h'(xo)s) 2 0.
But this means that h'(x))(T(xg)] # ¥, which contradicts the regularity assusption
(Proposition 1.1). Rence V # 0, 80 in fact v > 0. If we define A ;= %/v then (3.4)
yields £'(xg) + h'(x,)'A € Hylxg), and (3.5) yields
£%(x5)aa + (x,h"(xo)dd) 20 .
This completes the proof.

One might wonder whether we could replace C =~ ) in the statement of Theorem 3.3
by Telxg)e 1In general, the answer is no. For exsmple, consider f : 2 en given by
£lxyxy) 1= %y = 2 af, with cC W defined by c 1= {(x,,x)Ix, 2 Ix,1>%}, and 2et h
be vacuous. With x5 1= (0,0) we have T, (x,) = R x R,. However, if we take 4 = (1,0)
then we have f'(xo)d =0 and f'(xo)dd = =1 < 0, yot the origin is a local minimiger of
f on C. The prodlem here is that there is no feasible (':z arc emanating from the origin
with tangent (1,0). Of course, if C were polyhedral thea, near Xge C = X5 would agree
with Ta(xy), 80 in that case we could take 4d € To(xg).

It is also not very difficult to find examples to show that one cannot in general use

the same A for every 4 in Theorem 3.3, HNowever, if the A appearing in the first
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order condition should happen to be unique then Theorem 3.3 would guarantee that that A

would work for all d. This uniqueness is in fact realized in an important special case,

that of nondegeneracy. That special case will be treated in detail in Part II of this

paper.
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